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Spin–spin correlation function for the free-fermion model:
crossover from two-dimensional Ising to
Pokrovsky–Talapov critical behaviour

S B Rutkevich
Institute of Physics of Solids and Semiconductors, P Brovki 17, Minsk, Belarus

Received 6 November 1996, in final form 20 February 1997

Abstract. We calculate the spin–spin correlation function for a(1 + 1)-dimensional free-
fermion model displaying crossover from the two-dimensional Ising to Pokrovsky–Talapov
critical behaviour. In the Ising limit our results reduce to the well known exact representations
reported by Wuet al. Correspondence between the obtained correlation function and an exactly
solvable classical Hamiltonian system is established.

Calculation of correlation functions in exactly solvable models of statistical mechanics is
of considerable interest both for physical and mathematical reasons. On the one hand, it
helps one to interpret correctly the extensive information provided by scattering experiments
in real condensed matter systems undergoing phase transitions [1, 2]. On the other hand,
correlation functions possess remarkable mathematical properties having a deep relationship
with classical integrable systems and quantum groups [3, 4].

In this paper we report results of the calculation of the Ising spin correlation function
in the continuous free-fermion model defined by the Hamiltonian

E =
∫ L

0
dx

{
�ψ+ψ + s dψ+

dx

dψ

dx
+ i0

2

(
dψ+

dx
ψ+ + dψ

dx
ψ

)}
. (1)

HereL is the system length in thex-direction and operatorsψ(x) andψ+(x) describe a
spinless fermionic field obeying standard anticommutational relations. By rescaling of the
energy, space coordinate and fermionic operators one can easily show that model (1) can
be characterized completely by the sign of� and the single parameterg given by

g ≡ 0

(4s|�|)1/2 .

Being considered as(1+ 1)-dimensional quantum field theory, model (1) describes non-
relativistic fermions which move in thex-line and can appear and annihilate in pairs.
The main physical motivation for studying such fermionic models lies, however, in two-
dimensional statistical mechanics. In particular, the fermionic approach is widely used in
the theory of the commensurate–incommensurate phase transition in a system of atoms
adsorbed on a crystalline substrate [5–7]. After conventional mapping of the Euclidean
(1+ 1)-dimensional field theory defined by (1) onto two-dimensional classical statistical
mechanics the time variableτ is interpreted as the second space variable in the plane
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Figure 1. A typical configuration of domain walls and Ising spins described by the Hamiltonian
(1).

(x, τ ). Fermion trajectoriesx(τ) correspond to domain wall lines (solitons) in the(x, τ )
plane. Such a wall separates alternating regions, where values+1 and−1 are assigned to
the discrete order parameterσ(x, τ ) (see figure 1). We shall use magnetic terminology and
name the variableσ(x, τ ) by ‘Ising spin’. One can easily express the product of two Ising
spin operatorŝσ(x1) and σ̂ (x2) in terms of fermionic fields

σ̂ (x2)σ̂ (x1) = exp

{
iπ
∫ x2

x1

dx ψ+(x)ψ(x)
}
. (2)

This relation means, simply, that spins at the pointsx1 andx2 are the same or opposite, if
the number of domain walls between these two points is even or odd, respectively.

The correlation functionP(x, τ ) we are going to study is defined as

P(x, τ ) = 〈8|U(−τ)σ̂ (x)U(τ)σ̂ (0)|8〉. (3)

Here|8〉 denotes the Hamiltonian ground state andU(τ) = e−τE is the Euclidean evolution
operator. The product of two Ising spin operators atτ = 0 is defined by (2); for different
time momenta formula (2) is generalized below (see (15), (16)).

The phase diagram of the model defined by Hamiltonian (1) is typical for the free-
fermionic models [7, 8]. In the point� = 0 the phase transition takes place from the
ordered (� > 0) to the disordered phase (� < 0). It belongs to the two-dimensional Ising
universality class for all0 6= 0. If 0 = 0, the number of domain walls is the same in each
sectionτ = constant, and finite-size domains are not allowed. This constraint is crucial for
the Pokrovsky–Talapov phase transition [9]. We review briefly its main properties. After
the Fourier transfer of the fermionic field

ap = L−
1
2

∫ L

0
dx ψ(x)exp(ipx)

Hamiltonian (1) becomes diagonal

E =
∑
p

ε(p)a+p ap (4)

where ε(p) = � + sp2 is the fermion spectrum. If� > 0, the energyε(p) is positive
for all p, and the ground state is the vacuum vector of theap-operators. Thus, there are
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no domain walls in this ordered (commensurate) phase, and the free energy is zero. If
� < 0, states with negativeε(p) < 0 appear under the Fermi sphere−pF < p < pF,
wherepF = (|�|/s)1/2 is the Fermi momentum. All these states are occupied by fermions
in the ground state. This means that domain walls appear in the(x, τ )-plane (see figure 1).
They are aligned in average in theτ -direction and form a one-dimensional lattice in the
x-direction with the densitypF/π ∼ |�|1/2 vanishing in the phase transition point� = 0.

So, two asymptotic regions can be separated in the(�, 0)-plane. Ifg � 1, the model (1)
is equivalent to the critical two-dimensional Ising model, which is isotropic in certain
coordinates [10]. In the opposite limitg � 1, the concentration of finite-size domains
vanishes and fluctuations become strongly unisotropic, approaching the Pokrovsky–Talapov
picture described above. These two regions can be illustrated in the exact formula for the
spontaneous magnetizationM in the ordered phase:

M = (1+ g2)−1/8. (5)

It is almost equal to unity in the Pokrovsky–Talapov region and goes to zero∼�1/8 in the
Ising limit.

It should be noted that the continuous free-fermion model (1) can be mapped by the
Jordan–Wigner transformation onto the double scaling limit of theXY -model, which was
studied by Jimboet al [11]. The latter model is defined by the quantum spin chain
Hamiltonian

HXY = −1

4

∑
m∈Z

((1+ γ )σ xmσ xm+1+ (1− γ )σ ymσ ym+1+ 2hσ zm). (6)

Correspondence of the Hamiltonian parameters is given by

γ = 0

2
√
s

h = 1+ �
2
.

The double scaling limit of the model (6) is described by relations

δ = (|1− h2|)1/2 γ = gδ g = constant> 0, δ→ 0.

The Ising spin operator̂σ(x) defined by (2) takes the form

σ̂ (x) = exp

(
iπ

m−1∑
j=−∞

σ+j σ
−
j

) m−1∏
j=−∞

(−1)j (7)

whereσ±j = 1
2(σ

x
j ± iσyj ) andx = m√s.

Jimboet al [11] calculated then-point in-line correlation function

〈8|σxm1
σxm2

, . . . , σ xmn |8〉
for the model (6) in the double scaling limit in the phase|h| < 1, and expressed it in terms
of the ordinary Painlev́e V differential equation. Recently, Eßleret al [12] established a
relation between the Painlevé V differential equation and correlation functions in an exactly
solvable model of interacting fermions. We are interested in another, though closely related,
set of problems. The differences are as follows.
• We consider the two-point correlation function of the spin operators (7), which

naturally appear if model (1) is used to describe the commensurate–incommensurate phase
transition. These spin operators are related toσxm by the duality transformation (see [13]).
Jimboet al calculated correlation functions of the initialσxm operators.
• We study both|h| > 1 and|h| < 1 phases, while Jimboet al consider only the phase

|h| < 1, which is ordered for theσxm operators.
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• We calculate the off-line correlation functionP(x, τ ) which depends on space and
time coordinates, while Jimboet al restrict their consideration to the in-line correlation
function depending onx only.
• Correspondingly, we express the result in terms of a not ordinary (Painlevé V), but

partial differential equation (see (29)).
Passing to calculations, let us introduce new fermionic operatorsbp

bp = ap cosϕ(p)+ a+−p sinϕ(p) (8)

which are related to theap-operators by the Bogoliubov–Valatin transformation characterized
by the angleϕ(p). Then the following representation is valid for the Ising spin operator
σ̂ (x):

σ̂ (x) = M(ϕ) : exp

{
1

2L

∑
pk

[Dpk(bpbk − b+−kb+−p) exp[−i(p + k)x]

+2b+p bkGpk exp[i(p − k)x]]

}
: (9)

where

Dpk = 1

p + k
[
A(k)

A(p)
− A(p)
A(k)

]
Gpk = i

k − p − i0

[
A(k)

A(p)
+ A(p)
A(k)

]
(10)

A(p) = exp

[
1

π

∫ p

−∞
dk
∫ ∞
−∞

dq

q − k
dϕ(q)

dq

]
(11)

M(ϕ) = exp

{
1

2π2

∫ ∞
−∞

dpϕ(p)
∫ ∞
−∞

dq

q − p
dϕ(q)

dq

}
. (12)

Notation : exp{. . .} : has been used for normal ordering with respect to theb+, b-operators.
Integration inq is understood in the sense of the Cauchy principal value. In the above
representation the angle of the Bogoliubov–Valatin transformationϕ(p) is an arbitrary
continuous odd function obeying the following conditions:

(i) −π/2< ϕ(p) 6 0 for p > 0;
(ii) ϕ(p) has a single minimum in the half-linep > 0;
(iii) ϕ(p) goes to zero at|p| → ∞ fast enough so that integrals in (13) definingM(ϕ)

converge.
If ϕ(p) ≡ 0, representation (6) reduces to the relation

σ̂ (x) =: exp

(
− 2

∫ ∞
x

dy ψ+(y)ψ(y)
)

:

which can be easily verified in the 2n-particle sectors. For arbitraryϕ(p) we derive (9)
from (2) in several steps. First, we consider the matrix entrance〈β∗|σ̂ (x2)σ̂ (x1)|β〉 between
fermionic coherent states

〈β∗| ≡ 〈0b| exp

(∑
p

bpβ
∗
p

)
|β〉 ≡ exp

(∑
p

βpb
+
p

)
|0b〉 (13)

where|0b〉 is the vacuum vector of operatorsbp (i.e. bp|0b〉 = 0 for ∀p) andβp, β∗p denote
the Grassmann variables. We represent this matrix entrance in terms of the Fredholm
determinant of some integral operator. Then we express it in the limit(x2 − x1)→∞ as
a product of two factors depending onx2 and x1, respectively. Identifying these factors
with matrix entrances〈β∗|σ̂ (x2)|β〉 and〈β∗|σ̂ (x1)|β〉, we derive (9)–(12) after some algebra
based on the solution of a Riemann–Hilbert problem. The evaluation procedure outlined
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above is alternative to the Clifford algebra approach to the same problem introduced by
Jimboet al [11].

Representation (9) turns out to be a very convenient starting point for the calculation
of the vacuum average of products of spin operators. Let us denote byσ(x;β∗p, βp) the
normal symbol of the operator̂σ(x), which is obtained from (9) by replacing the fermionic
operatorsb+p , bp by their Grassmann counterpartsβ∗p , βp. Denote, further, byU0(τ ) the
free-field evolution operator

U0(τ ) = exp

[
−τ

∑
p

ω(p)b+p bp

]
characterized by some frequenciesω(p). Then the vacuum averageP0(x, τ ) defined by

P0(x, τ ) = 〈0b|U0(−τ)σ̂ (x)U0(τ )σ̂ (0)|0b〉 (14)

can be written as a Gaussian continual integral over Grassmann variables:

P0(x, τ ) =
∫ (∏

p

dβ∗p dβp

)
σ(x; 0, βp e−τω(p))σ (0;β∗p, 0) exp

(
−
∑
p

β∗pβp

)
. (15)

Straightforward integration yields

P0(x, τ ) = M2(ϕ) det[1+ D̂(x, τ )] (16)

whereM(ϕ) is given by (10), andD̂(x, τ ) is the integral operator acting on a functionf (p)
in the following way:

D̂(x, τ )f (p) =
∫ ∞
−∞

dk

2π
Dpkf (k) exp

{
−1

2
ix(p + k)− 1

2
τ [ω(p)+ ω(k)]

}
. (17)

Throughout the above analysis we did not concretize the angle of the Bogoliubov–Valatin
transformationϕ(p). But now let us put

ϕ(p) = 1
2 arg(�+ sp2− i0p) (18)

choosing the branch of the argument by the constraintϕ(±∞) = 0. Corresponding
b-operators diagonalize Hamiltonian (1) in both ordered (� > 0) and disordered (� < 0)
phases:

E =
∑
p

ω(p)b+p bp + constant whereω(p) = [(�+ sp2)2+ (0p)2]1/2. (19)

If � > 0, function (19) satisfies conditions (i)–(iii). So, one can apply general
formula (14) to calculateP0(x, τ ). This coincides with the desired correlation function
P(x, τ ), since|8〉 = |0b〉 andU(τ) = U0(τ ) in this case. Substituting (18) into (9)–(11)
one obtains in the ordered phase

P(x, τ ) = M2 det[1+ D̂(x, τ )]. (20)

Here the spontaneous magnetizationM is given by (5). OperatorD̂(x, τ ) is defined by
relations (10) and (17), where the functionA(p) reduces to

A(p) =
(
p2− p2

1

p2− p2
2

)1/4

.

We use the notationp1 andp2 for two complex solutions of the equationω(p) = 0, which
are ordered as follows: 0< Imp1 6 Imp2 <∞.

In the disordered phase� < 0, relations (18) and (19) still hold. However, we cannot
apply formula (16), since the functionϕ(p) defined by (18) has a discontinuity in the
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origin: ϕ(±0) = ∓π/2. Formally, this leads to indeterminacy in the right-hand side of
(17): M2(ϕ) = 0, while the functionDpk becomes singular in the originp → 0, k → 0.
To avoid this problem, let us replace (19) by the regularized function†

ϕ(p; δ) = 1
2 arg(�+ sp2− i0p)+ arg(p + iδ) (21)

with small positiveδ. This function is appropriate for satisfying conditions (i)–(iii), so we
can calculateP0(x, τ ; δ) according to (17). Proceeding then to the limitδ → 0 one can
obtain

lim
δ→0

P0(x, τ ; δ) = C · (f, [1− D̂2
+(x, τ )]

−1f ) det[1+ D̂+(x, τ )] (22)

where

f (p) = [ω(p)]−1/2 exp[− 1
2ixp − 1

2τω(p)]

and operatorD̂+(x, τ ) is defined by relations (10) and (17), whereA(p) is replaced by√
ω(p). The scalar product of two functionsf (p) andg(p) reads as

(f, g) ≡ (2π)−1
∫ ∞
−∞

dp f (p)g(p).

The constant factorC is determined by the evident requirement thatP(0, 0; δ) = 1.
Formulae (20) and (22) are our first main result. Representation (20) relating to the

ordered phase is exact. It is not evident, however, that the limiting procedure (21) and (22)
leads to the exact correlation functionP(x, τ ) in the disordered phase. Nevertheless,both
formulae (20) and (22) reduce in the limit|�|s � 02 to the exact spin–spin correlation
function of the two-dimensional Ising model in the critical region, which was reported by
Wu et al [10]. In this limit we have

p1 = i|�|/0 p2/p1 = ∞ ω(p) = [�2+ (0p)2]1/2

D̂(x, τ ) = D̂+(x, τ ) Dpk = 1

p + k
ω(k)− ω(p)√
ω(k)ω(p)

.

Then putting� = 0 = 1, one can easily verify that

det[1+ D̂(x, τ )] = F̂−(
√
x2+ τ 2) (f, [1− D̂2(x, τ )]−1f ) = G(

√
x2+ τ 2)

whereF̂−(x) andG(x) are the universal functions introduced by Wuet al in relations (2.26)
and (2.29) in their paper [10]. This allows us to suggest that the right-hand side of (22)
gives the exact correlation functionP(x, τ ) in the disordered phase (� < 0) for model (1).

The Fourier transform of the correlation functionP(x, τ ) is often called theK-dependent
susceptibilityχ(K):

χ(K) = 2
∫ ∞
−∞

dx
∫ ∞

0
dτP (x, τ )exp(iKx). (23)

It can be shown from (20) and (22) that its singularities in the complexK-plane lie at the
points±(m1p1 + m2p2), wherem1, m2 = 0, 1, 2, . . . , and 26 (m1 + m2) = 0 mod 2 in
the ordered phase� > 0, and(m1+m2) = 1 mod 2 in the disordered phase� < 0. In the
Ising limit all singularities are purely imaginary, as was shown by Tracy and McCoy [1].
By contrast, in the Pokrovsky–Talapov limitg → 0 and� < 0 singularities fill the lines
ReK = ±(m1 + m2)pF. These singularities correspond to the Bragg (m1 + m2 = 1) and
satellite (m1 + m2 = 3, 5, . . .) reflections on the periodic multisoliton lattice, which could

† Physically ansatz (21) corresponds in the BCS approximation to the effect of a small magnetic fieldh ∼ √δ on
the ground state of the system (1) (for details see [14]).
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be observed in some scattering experiment in a two-dimensional incommensurate crystal.
Perhaps, representation (22) could be also useful in interpretation of scattering patterns in
three-dimensional incommensurate crystals [15].

The leading term ing → 0 in the correlation function (22) has a simple form for
xpF� 1:

P(x, τ ) = 2
√
gF̂+(r)F̂−(r) cosxpF (24)

where

r = g[(xpF )
2+ 4(�τ)2]1/2

and F̂+(r) and F̂−(r) are the universal correlation functions of the two-dimensional Ising
model in the critical region in the paramagnetic and ferromagnetic phases, respectively [10].

It is well known that correlation functions of integrable models of statistical mechanics
are closely related with some classical Hamiltonian models, which in turn can be solved
exactly by the inverse scattering method (see [4, 10–12]). We establish such a relationship
for the correlation function of model (1) in the ordered phase� > 0. It is convenient to
introduce new independent variablesy and t by the relations

x(y) = ys[02+ 4s�]−1/2 τ(t) = −its[02+ 4s�]−1

and to modify our definition of the correlation function (3):

P̃ (y, t) ≡ P(x(y), τ (t)). (25)

Let us consider a classical Hamiltonian system defined by the Hamiltonian

H =
∫

dyH(y) (26)

with Hamiltonian density

H(y) = 1

2

{
π2(y)[u′2(y)+ (1/4)R(u)] + [u′′(y)+ (1/8) dR(u)/du]2

[u′2(y)+ (1/4)R(u)] − k2u2(y)

}
. (27)

Hereu(y) andπ(y) are the canonical coordinate and momentum functions,k2 = 02/[02+
4s�], andR(u) = (1−u2)(1− k2u2). The standard Poisson brackets on the coordinate and
momentum functions are assumed:

{π(y1), u(y2)} = δ(y1− y2).

Then the following equality is valid

∂2 ln P̃ (y, t)

∂y2
= −1

2
H(y, t). (28)

Here H(y, t) is the time evolution of the Hamiltonian density (27) according to the
Hamiltonian dynamics of canonical variablesu(y, t) and π(y, t), which corresponds to
certain initial conditionsu(y, 0) = u0(y) and π(y, 0) = 0. Representation (28) is our
second main result.

It turns out that the classical Hamiltonian model defined by (26) and (27) is exactly
solvable by the quantum inverse scattering method. More precisely, we have obtained for
the Hamiltonian equations of this model the zero curvature representation [16], which is
known to be equivalent to the Lax representation. In the limitk → 1 the model (26)
and (27) reduces to the sine–Gordon model. The evaluation procedure leading to (26)–
(28) follows by principal moments to the Faddeev school version of the inverse scattering
method [16] passed in the ‘backward’ direction, however. Starting from the eigenvalue
problem for the operator̂D(x(y), τ (t)) defined by (17), through analysis of the associated



3890 S B Rutkevich

Riemann–Hilbert problem, we come to the overdetermined set of zero-curvature equations
[16]. Their solvability conditions coincide with the Hamiltonian equations of the model
(26) and (27). Details will be published elsewhere.
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